When Hamiltonians are nonsmooth, we define viscosity solutions of the Aronsson equation and prove that value functions of the corresponding deterministic optimal control problems are solutions if they are bilateral viscosity solutions of the Hamilton-Jacobi-Bellman equation. We characterize such a property in several ways, in particular it follows that a value function which is an absolute minimizer is a bilateral viscosity solution of the HJB equation and these two properties are often equivalent. We also determine that bilateral solutions of HJB equations are unique among absolute minimizers with prescribed boundary conditions.

On Aronsson Equation and Deterministic Optimal Control

SORAVIA, PIERPAOLO
2009

Abstract

When Hamiltonians are nonsmooth, we define viscosity solutions of the Aronsson equation and prove that value functions of the corresponding deterministic optimal control problems are solutions if they are bilateral viscosity solutions of the Hamilton-Jacobi-Bellman equation. We characterize such a property in several ways, in particular it follows that a value function which is an absolute minimizer is a bilateral viscosity solution of the HJB equation and these two properties are often equivalent. We also determine that bilateral solutions of HJB equations are unique among absolute minimizers with prescribed boundary conditions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2381172
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact