Increased glucose transporter GLUT4 expression in skeletal muscle is an important benefit of regular exercise, resulting in improved insulin sensitivity and glucose tolerance. The Ca(2+)-calmodulin-dependent kinase II (CaMKII), calcineurin and AMPK pathways have been implicated in GLUT4 gene regulation based on pharmacological evidence. Here, we have used a more specific genetic approach to establish the relative role of the three pathways in fast and slow muscles. Plasmids coding for protein inhibitors of CaMKII or calcineurin were co-transfected in vivo with a GLUT4 enhancer-reporter construct either in normal mice or in mice expressing a kinase dead (KD) AMPK mutant. GLUT4 reporter activity was not inhibited in the slow soleus muscle by blocking either CaMKII or calcineurin alone, but was inhibited by blocking both pathways. GLUT4 reporter activity was likewise unchanged in the soleus of KD-AMPK mice, but was significantly reduced by incapacitation of either CaMKII or calcineurin in these mice. On the other hand, in the fast tibialis anterior (TA) muscle, calcineurin appears to exert a prominent role in the control of GLUT4 reporter activity, independent of CaMKII and AMPK. The results point to a muscle type-specific and redundant regulation of GLUT4 enhancer based on the interplay of multiple signalling pathways, all of which are known to affect myocyte enhancing factor 2 (MEF2) transcriptional activity, a point of convergence of different pathways on muscle gene regulation.

Multiple signalling pathways redundantly control GLUT4 gene transcription in skeletal muscle

MURGIA, MARTA;
2009

Abstract

Increased glucose transporter GLUT4 expression in skeletal muscle is an important benefit of regular exercise, resulting in improved insulin sensitivity and glucose tolerance. The Ca(2+)-calmodulin-dependent kinase II (CaMKII), calcineurin and AMPK pathways have been implicated in GLUT4 gene regulation based on pharmacological evidence. Here, we have used a more specific genetic approach to establish the relative role of the three pathways in fast and slow muscles. Plasmids coding for protein inhibitors of CaMKII or calcineurin were co-transfected in vivo with a GLUT4 enhancer-reporter construct either in normal mice or in mice expressing a kinase dead (KD) AMPK mutant. GLUT4 reporter activity was not inhibited in the slow soleus muscle by blocking either CaMKII or calcineurin alone, but was inhibited by blocking both pathways. GLUT4 reporter activity was likewise unchanged in the soleus of KD-AMPK mice, but was significantly reduced by incapacitation of either CaMKII or calcineurin in these mice. On the other hand, in the fast tibialis anterior (TA) muscle, calcineurin appears to exert a prominent role in the control of GLUT4 reporter activity, independent of CaMKII and AMPK. The results point to a muscle type-specific and redundant regulation of GLUT4 enhancer based on the interplay of multiple signalling pathways, all of which are known to affect myocyte enhancing factor 2 (MEF2) transcriptional activity, a point of convergence of different pathways on muscle gene regulation.
2009
File in questo prodotto:
File Dimensione Formato  
Murgia Jensen 2009.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso gratuito
Dimensione 344.17 kB
Formato Adobe PDF
344.17 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2379031
Citazioni
  • ???jsp.display-item.citation.pmc??? 22
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 39
social impact