We introduce the sharp (universal) extension of a 1-motive (with additive factors and torsion) over a field of characteristic zero. We define the sharp de Rham realization by passing to the Lie-algebra. Over the complex numbers we then show a (sharp de Rham) comparison theorem in the category of formal Hodge structures. For a free 1-motive along with its Cartier dual we get a canonical connection on their sharp extensions yielding a perfect pairing on sharp realizations. Thus we show how to provide one-dimensional sharp de Rham cohomology of algebraic varieties.

Sharp de Rham realization

BERTAPELLE, ALESSANDRA
2009

Abstract

We introduce the sharp (universal) extension of a 1-motive (with additive factors and torsion) over a field of characteristic zero. We define the sharp de Rham realization by passing to the Lie-algebra. Over the complex numbers we then show a (sharp de Rham) comparison theorem in the category of formal Hodge structures. For a free 1-motive along with its Cartier dual we get a canonical connection on their sharp extensions yielding a perfect pairing on sharp realizations. Thus we show how to provide one-dimensional sharp de Rham cohomology of algebraic varieties.
2009
File in questo prodotto:
File Dimensione Formato  
sharp-adv.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso gratuito
Dimensione 336.9 kB
Formato Adobe PDF
336.9 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2376155
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 13
  • OpenAlex ND
social impact