Apatite fission-track analyses on samples from eastern Sardinia document a complex tectonic history, whose reconstruction is problematic because of the reactivation of faults and structures at different times from Jurassic to Miocene. The oldest ages (150–154 Ma) have been detected on the southern margin of the Gulf of Orosei and are related to the extensional tectonics that characterize the European passive margin during Early and Middle Jurassic times. Thermal modelling of these data allows reconstruction of the burial history of the Mesozoic basin and estimation of a sedimentary thickness of 2000 m. Part of these sediments was eroded during the following uplift, documented by mid-Cretaceous fission-track ages. A further exhumation episode of Eocene age has been revealed by fission-track data on granite samples, and has been inferred to be related to the Alpine orogenic phase. This tectonic episode caused the exhumation of crustal blocks bound by faults that were finally reactivated during the Late Oligocene–Early Miocene.

Thermochronological evidence for Mesozoic-Tertiary tectonic evolution in the eastern Sardinia

ZATTIN, MASSIMILIANO;MASSARI, FRANCESCO;DIENI, IGINIO
2008

Abstract

Apatite fission-track analyses on samples from eastern Sardinia document a complex tectonic history, whose reconstruction is problematic because of the reactivation of faults and structures at different times from Jurassic to Miocene. The oldest ages (150–154 Ma) have been detected on the southern margin of the Gulf of Orosei and are related to the extensional tectonics that characterize the European passive margin during Early and Middle Jurassic times. Thermal modelling of these data allows reconstruction of the burial history of the Mesozoic basin and estimation of a sedimentary thickness of 2000 m. Part of these sediments was eroded during the following uplift, documented by mid-Cretaceous fission-track ages. A further exhumation episode of Eocene age has been revealed by fission-track data on granite samples, and has been inferred to be related to the Alpine orogenic phase. This tectonic episode caused the exhumation of crustal blocks bound by faults that were finally reactivated during the Late Oligocene–Early Miocene.
2008
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2270645
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 23
social impact