For each submanifold of a stratified group, we find a number and a measure only depending on its tangent bundle, the grading and the fixed Riemannian metric. In two step stratified groups, we show that such number and measure coincide with the Hausdorff dimension and with the spherical Hausdorff measure of the submanifold with respect to the Carnot-Carathéodory distance, respectively. Our main technical tool is an intrinsic blow-up at points of maximum degree. We also show that the intrinsic tangent cone to the submanifold at these points is always a subgroup. Finally, by direct computations in the Engel group, we show how our results can be extended to higher step stratified groups, provided the submanifold is sufficiently regular.
An intrinsic measure for submanifolds in stratified groups
VITTONE, DAVIDE
2008
Abstract
For each submanifold of a stratified group, we find a number and a measure only depending on its tangent bundle, the grading and the fixed Riemannian metric. In two step stratified groups, we show that such number and measure coincide with the Hausdorff dimension and with the spherical Hausdorff measure of the submanifold with respect to the Carnot-Carathéodory distance, respectively. Our main technical tool is an intrinsic blow-up at points of maximum degree. We also show that the intrinsic tangent cone to the submanifold at these points is always a subgroup. Finally, by direct computations in the Engel group, we show how our results can be extended to higher step stratified groups, provided the submanifold is sufficiently regular.File | Dimensione | Formato | |
---|---|---|---|
MagnaniVittone-Crelle2008.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Accesso libero
Dimensione
278.58 kB
Formato
Adobe PDF
|
278.58 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.