We consider the Gamma-limit of a family of functionals which model the interaction of a material that undergoes phase transition with a rapidly oscillating conservative vector field. These functionals consist of a gradient term, a double-well potential and a vector field. The scaling is such that all three terms scale in the same way and the frequency of the vector field is equal to the interface thickness. Difficulties arise from the fact that the two global minimizers of the functionals are nonconstant and converge only in the weak L-2-topology.

Gradient theory of phase transitions with a rapidly oscillating forcing term

NOVAGA, MATTEO
2008

Abstract

We consider the Gamma-limit of a family of functionals which model the interaction of a material that undergoes phase transition with a rapidly oscillating conservative vector field. These functionals consist of a gradient term, a double-well potential and a vector field. The scaling is such that all three terms scale in the same way and the frequency of the vector field is equal to the interface thickness. Difficulties arise from the fact that the two global minimizers of the functionals are nonconstant and converge only in the weak L-2-topology.
2008
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2268348
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
  • OpenAlex ND
social impact