We show that the coexistence of Fermi arcs and metal–insulator crossover of the in-plane resistivity can give a hint of a peculiar “gauge compositeness” of the electron in hole-doped high Tc cuprates and a similar hint also comes from the negative intercept at T=0 of the electronic entropy extrapolated from moderate temperatures in the “pseudogap phase”. An implementation of this “compositeness” within the spin–charge gauge approach is outlined and is employed to discuss the above phenomena.

Spin-charge gauge compositeness of electron in HTS: Hints from metal-insulator crossover and entropy behavior

MARCHETTI, PIERALBERTO;AMBROSETTI, ALBERTO;
2008

Abstract

We show that the coexistence of Fermi arcs and metal–insulator crossover of the in-plane resistivity can give a hint of a peculiar “gauge compositeness” of the electron in hole-doped high Tc cuprates and a similar hint also comes from the negative intercept at T=0 of the electronic entropy extrapolated from moderate temperatures in the “pseudogap phase”. An implementation of this “compositeness” within the spin–charge gauge approach is outlined and is employed to discuss the above phenomena.
2008
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2267662
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact