The dynamics of river bed evolution are known to be notoriously complex affected by near-bed turbulence, the collective motion of clusters of particles of different sizes, and the formation of bedforms and other large-scale features. In this paper, we present the results of a study aiming to quantify the inherent nonlinearity and complexity in gravel bed dynamics. The data analyzed are bed elevation fluctuations collected via submersible sonar transducers at 0.1 Hz frequency in two different settings of low and high discharge in a controlled laboratory experiment. We employed surrogate series analysis and the transportation distance metric in the phase-space to test for nonlinearity and the finite size Lyapunov exponent (FSLE) methodology to test for complexity. Our analysis documents linearity and underlying dynamics similar to that of deterministic diffusion for bed elevations at low discharge conditions. These dynamics transit to a pronounced nonlinearity and more complexity for high discharge, akin to that of a multiplicative cascading process used to characterize fully developed turbulence. Knowing the degree of nonlinearity and complexity in the temporal dynamics of bed elevation fluctuations can provide insight into model formulation and also into the feedbacks between near-bed turbulence, sediment transport and bedform development.

Nonlinearity and complexity in gravel bed dynamics

LANZONI, STEFANO;
2009

Abstract

The dynamics of river bed evolution are known to be notoriously complex affected by near-bed turbulence, the collective motion of clusters of particles of different sizes, and the formation of bedforms and other large-scale features. In this paper, we present the results of a study aiming to quantify the inherent nonlinearity and complexity in gravel bed dynamics. The data analyzed are bed elevation fluctuations collected via submersible sonar transducers at 0.1 Hz frequency in two different settings of low and high discharge in a controlled laboratory experiment. We employed surrogate series analysis and the transportation distance metric in the phase-space to test for nonlinearity and the finite size Lyapunov exponent (FSLE) methodology to test for complexity. Our analysis documents linearity and underlying dynamics similar to that of deterministic diffusion for bed elevations at low discharge conditions. These dynamics transit to a pronounced nonlinearity and more complexity for high discharge, akin to that of a multiplicative cascading process used to characterize fully developed turbulence. Knowing the degree of nonlinearity and complexity in the temporal dynamics of bed elevation fluctuations can provide insight into model formulation and also into the feedbacks between near-bed turbulence, sediment transport and bedform development.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2267196
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 18
  • OpenAlex ND
social impact