Bottom racks made by longitudinal bars are hydraulic structures widely adopted for engineering purposes. In the present paper we revisit the problem of their hydraulic design, analyzing the data obtained from a systematic series of experiments carried out in a laboratory flume. For each run we measured the diverted discharge, the water surface longitudinal profile, and using a two-dimensional backscatter laser Doppler anemometer, we measured the velocity field over the rack and in the slit between two adjacent bars. The latter measurements, in particular, allow us to obtain the along-rack distributions of the discharge coefficient to be used to determine the rate of change of the diverted discharge. We use such distributions to derive a physically based relationship relating the overall diverted discharge to the length of the rack, the void ratio, the discharge coefficient measured under static conditions, the specific head of the stream approaching the rack, and a modified Froude number. The robustness of the proposed relationship is confirmed by the comparison between the discharges calculated through the proposed relationship and those measured in an extensive series of experiments available in the literature, characterized by ranges of the relevant flow parameters much larger than those investigated in the present contribution.
Experimental study of the flow field over bottom intake racks
LANZONI, STEFANO
2008
Abstract
Bottom racks made by longitudinal bars are hydraulic structures widely adopted for engineering purposes. In the present paper we revisit the problem of their hydraulic design, analyzing the data obtained from a systematic series of experiments carried out in a laboratory flume. For each run we measured the diverted discharge, the water surface longitudinal profile, and using a two-dimensional backscatter laser Doppler anemometer, we measured the velocity field over the rack and in the slit between two adjacent bars. The latter measurements, in particular, allow us to obtain the along-rack distributions of the discharge coefficient to be used to determine the rate of change of the diverted discharge. We use such distributions to derive a physically based relationship relating the overall diverted discharge to the length of the rack, the void ratio, the discharge coefficient measured under static conditions, the specific head of the stream approaching the rack, and a modified Froude number. The robustness of the proposed relationship is confirmed by the comparison between the discharges calculated through the proposed relationship and those measured in an extensive series of experiments available in the literature, characterized by ranges of the relevant flow parameters much larger than those investigated in the present contribution.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.