On a scheme S over a base scheme B we study the category of locally constant BT groups, i.e. groups over S that are twists, in the flat topology, of BT groups defined over B. These groups generalize p-adic local systems and can be interpreted as integral p-adic representations of the fundamental group scheme of S/B (classifying finite flat torsors on the base scheme) when such a group exists. We generalize to these coefficients the Katz correspondence for p-adic local systems and show that they are closely related to the maximal nilpotent quotient of the fundamental group scheme.

Barsotti-Tate groups and p-adic representations of the fundamental group scheme.

GARUTI, MARCO-ANDREA
2008

Abstract

On a scheme S over a base scheme B we study the category of locally constant BT groups, i.e. groups over S that are twists, in the flat topology, of BT groups defined over B. These groups generalize p-adic local systems and can be interpreted as integral p-adic representations of the fundamental group scheme of S/B (classifying finite flat torsors on the base scheme) when such a group exists. We generalize to these coefficients the Katz correspondence for p-adic local systems and show that they are closely related to the maximal nilpotent quotient of the fundamental group scheme.
File in questo prodotto:
File Dimensione Formato  
LCBTVQR.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Accesso libero
Dimensione 261.24 kB
Formato Adobe PDF
261.24 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2266970
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact