In dimension $n=3$, we prove that the singular set of any stationary solution to the Liouville equation $-\Delta u=e^u$, which belongs to $W^{1,2}$, has Hausdorff dimension at most $1$.
Partial Regularity for Stationary Solutions to Liouville-Type Equation in dimension 3
DA LIO, FRANCESCA
2008
Abstract
In dimension $n=3$, we prove that the singular set of any stationary solution to the Liouville equation $-\Delta u=e^u$, which belongs to $W^{1,2}$, has Hausdorff dimension at most $1$.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.