In dimension $n=3$, we prove that the singular set of any stationary solution to the Liouville equation $-\Delta u=e^u$, which belongs to $W^{1,2}$, has Hausdorff dimension at most $1$.

Partial Regularity for Stationary Solutions to Liouville-Type Equation in dimension 3

DA LIO, FRANCESCA
2008

Abstract

In dimension $n=3$, we prove that the singular set of any stationary solution to the Liouville equation $-\Delta u=e^u$, which belongs to $W^{1,2}$, has Hausdorff dimension at most $1$.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2266091
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact