Let X be a smooth projective variety, and let M be a moduli space of stable sheaves on X. For any flat family E of coherent sheaves on X parametrized by a smooth scheme Y, and for any integer m, with 1 <= m <= dim X, we construct a closed differential form \Omega = \Omega_E on Y with values in H^m(X, O_X). By using the vector-valued differential form \Omega we then prove that the choice of a (non-zero) differential m-form \sigma on X, \sigma \in H^0(X, \Omega^m_X), determines, in a natural way, a closed differential m-form \Omega_{\sigma} on M.

Closed differential forms on moduli spaces of sheaves

BOTTACIN, FRANCESCO
2008

Abstract

Let X be a smooth projective variety, and let M be a moduli space of stable sheaves on X. For any flat family E of coherent sheaves on X parametrized by a smooth scheme Y, and for any integer m, with 1 <= m <= dim X, we construct a closed differential form \Omega = \Omega_E on Y with values in H^m(X, O_X). By using the vector-valued differential form \Omega we then prove that the choice of a (non-zero) differential m-form \sigma on X, \sigma \in H^0(X, \Omega^m_X), determines, in a natural way, a closed differential m-form \Omega_{\sigma} on M.
File in questo prodotto:
File Dimensione Formato  
RendicontiRoma.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 220.5 kB
Formato Adobe PDF
220.5 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2265369
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact