Different vertebrate species have different cardiac regeneration rates: high in teleost fish, moderate in urodele amphibians, and almost negligible in mammals. Regeneration may occur through stem and progenitor cell differentiation or via dedifferentiation with residual cardiomyocytes reentering the cell cycle. In this review, we will examine the ability of zebrafish and newts to respond to cardiac damage with de novo cardiogenesis, whereas rodents and humans respond with a marked fibrogenic response and virtually no cardiomyocyte regeneration. Concerted strategies are needed to overcome this evolutionarily imposed barrier and optimize cardiac regeneration in mammals.

From fish to amphibians to mammals: in search of novel strategies to optimize cardiac regeneration.

AUSONI, SIMONETTA;SARTORE, SAVERIO
2009

Abstract

Different vertebrate species have different cardiac regeneration rates: high in teleost fish, moderate in urodele amphibians, and almost negligible in mammals. Regeneration may occur through stem and progenitor cell differentiation or via dedifferentiation with residual cardiomyocytes reentering the cell cycle. In this review, we will examine the ability of zebrafish and newts to respond to cardiac damage with de novo cardiogenesis, whereas rodents and humans respond with a marked fibrogenic response and virtually no cardiomyocyte regeneration. Concerted strategies are needed to overcome this evolutionarily imposed barrier and optimize cardiac regeneration in mammals.
File in questo prodotto:
File Dimensione Formato  
From fish to amphibians...Ausoni.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/188721
Citazioni
  • ???jsp.display-item.citation.pmc??? 40
  • Scopus 74
  • ???jsp.display-item.citation.isi??? 72
  • OpenAlex ND
social impact