In this paper we analyse the robustness of the Hobson-Rogers model with respect to the offset function, which depends on the whole past of the risky asset and is thus not fully observable. We prove that, if the offset function is the realisation of a stationary process, then the error in pricing a derivative asset decreases exponentially with respect to the observation window. We present sufficient conditions on the volatility in order to characterise the invariant density and three examples.

Robustness of the Hobson-Rogers model with respect to the offset function

VARGIOLU, TIZIANO
2008

Abstract

In this paper we analyse the robustness of the Hobson-Rogers model with respect to the offset function, which depends on the whole past of the risky asset and is thus not fully observable. We prove that, if the offset function is the realisation of a stationary process, then the error in pricing a derivative asset decreases exponentially with respect to the observation window. We present sufficient conditions on the volatility in order to characterise the invariant density and three examples.
2008
Proceedings of the Ascona '05 Seminar on Stochastic Analysis, Random Fields and Applications
9783764384579
File in questo prodotto:
File Dimensione Formato  
article-smf-05.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso gratuito
Dimensione 289.86 kB
Formato Adobe PDF
289.86 kB Adobe PDF Visualizza/Apri
RobRogmdl.pdf

non disponibili

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 310.24 kB
Formato Adobe PDF
310.24 kB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1778719
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact