A spatial and temporal multiscale asymptotic homogenization method used to simulate thermo-dynamic wave propagation in periodic multiphase materials is systematically studied. A general field governing equation of thermo-dynamic wave propagation is expressed in a unified form with both inertia and velocity terms. Amplified spatial and reduced temporal scales are, respectively, introduced to account for spatial and temporal fluctuations and non-local effects in the homogenized solution due to material heterogeneity and diverse time scales. The model is derived from the higher-order homogenization theory with multiple spatial and temporal scales. It is also shown that the modified higher-order terms bring in a non-local dispersion effect of the microstructure of multiphase materials. One-dimensional non-Fourier heat conduction and dynamic problems under a thermal shock are computed to demonstrate the efficiency and validity of the developed procedure. The results indicate the disadvantages of classical spatial homogenization. Copyright (c) 2006 John Wiley & Sons, Ltd

Thermo-mechanical analysis of periodic multiphase materials by a multiscale asymptotic homogenization approach

SCHREFLER, BERNHARD
2007

Abstract

A spatial and temporal multiscale asymptotic homogenization method used to simulate thermo-dynamic wave propagation in periodic multiphase materials is systematically studied. A general field governing equation of thermo-dynamic wave propagation is expressed in a unified form with both inertia and velocity terms. Amplified spatial and reduced temporal scales are, respectively, introduced to account for spatial and temporal fluctuations and non-local effects in the homogenized solution due to material heterogeneity and diverse time scales. The model is derived from the higher-order homogenization theory with multiple spatial and temporal scales. It is also shown that the modified higher-order terms bring in a non-local dispersion effect of the microstructure of multiphase materials. One-dimensional non-Fourier heat conduction and dynamic problems under a thermal shock are computed to demonstrate the efficiency and validity of the developed procedure. The results indicate the disadvantages of classical spatial homogenization. Copyright (c) 2006 John Wiley & Sons, Ltd
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1776355
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 74
  • ???jsp.display-item.citation.isi??? 66
  • OpenAlex ND
social impact