This paper proposes a filtering methodology for portfolio optimization when some factors of the underlying model are only partially observed. The level of information is given by the observed quantities that are here supposed to be the primary securities and empirical log-price covariations. For a given level of information we determine the growth optimal portfolio, identify locally optimal portfolios that are located on a corresponding Markowitz efficient frontier and present an approach for expected utility maximization. We also present an expected utility indifference pricing approach under partial information for the pricing of nonreplicable contracts. This results in a real world pricing formula under partial information that turns out to be independent of the subjective utility of the investor and for which an equivalent risk neutral probability measure need not exist.
A benchmark Approach to Portfolio Optimization under Partial Information
RUNGGALDIER, WOLFGANG JOHANN
2007
Abstract
This paper proposes a filtering methodology for portfolio optimization when some factors of the underlying model are only partially observed. The level of information is given by the observed quantities that are here supposed to be the primary securities and empirical log-price covariations. For a given level of information we determine the growth optimal portfolio, identify locally optimal portfolios that are located on a corresponding Markowitz efficient frontier and present an approach for expected utility maximization. We also present an expected utility indifference pricing approach under partial information for the pricing of nonreplicable contracts. This results in a real world pricing formula under partial information that turns out to be independent of the subjective utility of the investor and for which an equivalent risk neutral probability measure need not exist.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.