We have performed high-resolution cosmological N-body simulations of a concordance ΛCDM model to study the evolution of virialized, dark matter haloes in the presence of primordial non-Gaussianity. Following a standard procedure, departures from Gaussianity are modelled through a quadratic Gaussian term in the primordial gravitational potential, characterized by a dimensionless non-linearity strength parameter fNL. We find that the halo mass function and its redshift evolution closely follow the analytic predictions of Matarrese, Verde & Jimenez. The existence of precise analytic predictions makes the observation of rare, massive objects at large redshift an even more attractive test to detect primordial non-Gaussian features in the large-scale structure of the Universe.

Evolution of Massive Haloes in non-Gaussian Scenarios

MATARRESE, SABINO;MOSCARDINI, LAURO
2007

Abstract

We have performed high-resolution cosmological N-body simulations of a concordance ΛCDM model to study the evolution of virialized, dark matter haloes in the presence of primordial non-Gaussianity. Following a standard procedure, departures from Gaussianity are modelled through a quadratic Gaussian term in the primordial gravitational potential, characterized by a dimensionless non-linearity strength parameter fNL. We find that the halo mass function and its redshift evolution closely follow the analytic predictions of Matarrese, Verde & Jimenez. The existence of precise analytic predictions makes the observation of rare, massive objects at large redshift an even more attractive test to detect primordial non-Gaussian features in the large-scale structure of the Universe.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1775023
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 72
  • ???jsp.display-item.citation.isi??? 73
  • OpenAlex ND
social impact