We show that if the number of directions determined by a pointset $\W$ of $\AG(3,q)$, $q=p^h$, of size $q^2$ is less than $q^2+2$, then every plane intersects $\W$ in $0$ modulo $p$ points, and apply the result to ovoids of the generalized quadrangles $T_2(\O)$ and $T_2^*(\O)$.

On the graph of a function in two variables over a finite field

LAVRAUW, MICHEL
2006

Abstract

We show that if the number of directions determined by a pointset $\W$ of $\AG(3,q)$, $q=p^h$, of size $q^2$ is less than $q^2+2$, then every plane intersects $\W$ in $0$ modulo $p$ points, and apply the result to ovoids of the generalized quadrangles $T_2(\O)$ and $T_2^*(\O)$.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/156916
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact