We show that if the number of directions determined by a pointset $\W$ of $\AG(3,q)$, $q=p^h$, of size $q^2$ is less than $q^2+2$, then every plane intersects $\W$ in $0$ modulo $p$ points, and apply the result to ovoids of the generalized quadrangles $T_2(\O)$ and $T_2^*(\O)$.
On the graph of a function in two variables over a finite field
LAVRAUW, MICHEL
2006
Abstract
We show that if the number of directions determined by a pointset $\W$ of $\AG(3,q)$, $q=p^h$, of size $q^2$ is less than $q^2+2$, then every plane intersects $\W$ in $0$ modulo $p$ points, and apply the result to ovoids of the generalized quadrangles $T_2(\O)$ and $T_2^*(\O)$.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.