A finite semifield is shown to be equivalent to the existence of a particular geometric configuration of subspaces with respect to a Desarguesian spread in a finite dimensional vector space over a finite field. In 1965 Knuth \cite{Knuth1965} showed that each finite semifield generates in total six (not necessarily isotopic) semifields. In certain cases, the geometric interpretation obtained here allows us to construct another six semifields, providing a link between some known examples which are not related by Knuth's operations.
A geometric construction of finite semifields
LAVRAUW, MICHEL
2007
Abstract
A finite semifield is shown to be equivalent to the existence of a particular geometric configuration of subspaces with respect to a Desarguesian spread in a finite dimensional vector space over a finite field. In 1965 Knuth \cite{Knuth1965} showed that each finite semifield generates in total six (not necessarily isotopic) semifields. In certain cases, the geometric interpretation obtained here allows us to construct another six semifields, providing a link between some known examples which are not related by Knuth's operations.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.