In this paper, we show that a small minimal $k$-blocking set in $\PG(n,q^3)$, $q=p^h$, $h\geq 1$, $p$ prime, $p\geq 7$, intersecting every $(n-k)$-space in $1\pmod{q}$ points, is linear. As a corollary, this result shows that all small minimal $k$-blocking sets in $\PG(n,p^3)$, $p$ prime, $p\geq 7$, are $\mathbb{F}_p$-linear, proving the linearity conjecture (see \cite{sziklai}) in the case $\PG(n,p^3)$, $p$ prime, $p\geq 7$.

A proof of the linearity conjecture for k-blocking sets in PG(n, p(3)), p prime

LAVRAUW, MICHEL;
2011

Abstract

In this paper, we show that a small minimal $k$-blocking set in $\PG(n,q^3)$, $q=p^h$, $h\geq 1$, $p$ prime, $p\geq 7$, intersecting every $(n-k)$-space in $1\pmod{q}$ points, is linear. As a corollary, this result shows that all small minimal $k$-blocking sets in $\PG(n,p^3)$, $p$ prime, $p\geq 7$, are $\mathbb{F}_p$-linear, proving the linearity conjecture (see \cite{sziklai}) in the case $\PG(n,p^3)$, $p$ prime, $p\geq 7$.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/156738
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact