In this paper, the study of new 7-chloro-3-hydroxy-1H-quinazoline-2,4-dione derivatives, designed as AMPA and kainate (KA) receptor antagonists, is reported. Some derivatives bear different carboxy-containing alkyl chains on the 3-hydroxy group, while various heterocyclic rings or amide moieties are present at the 6-position of other compounds. Binding data at Gly/NMDA, AMPA, and high-affinity KA receptors showed that the presence of the free 3-hydroxy group is of paramount importance for a good affinity at all three investigated receptors, while introduction of some 6-heterocyclic moieties yielded AMPA-selective antagonists. The most significant result was the finding of the 6-(2-carboxybenzoylamino)-3-hydroxy-1H-quinazolin-2,4-dione 12, which possesses good affinity for high-affinity and low-affinity KA receptors (Ki=0.62 microM and 1.6 microM, respectively), as well as good selectivity. To rationalize the trend of affinities of the reported derivatives, an intensive molecular modeling study was carried out by docking compounds to models of the Gly/NMDA, AMPA, and KA receptors.
Structural investigation of the 7-chloro-3-hydroxy-1H-quinazoline-2,4-dione scaffold to obtain AMPA and kainate receptor selective antagonists. Synthesis, pharmacological, and molecular modeling studies
DEFLORIAN, FRANCESCA;MORO, STEFANO
2006
Abstract
In this paper, the study of new 7-chloro-3-hydroxy-1H-quinazoline-2,4-dione derivatives, designed as AMPA and kainate (KA) receptor antagonists, is reported. Some derivatives bear different carboxy-containing alkyl chains on the 3-hydroxy group, while various heterocyclic rings or amide moieties are present at the 6-position of other compounds. Binding data at Gly/NMDA, AMPA, and high-affinity KA receptors showed that the presence of the free 3-hydroxy group is of paramount importance for a good affinity at all three investigated receptors, while introduction of some 6-heterocyclic moieties yielded AMPA-selective antagonists. The most significant result was the finding of the 6-(2-carboxybenzoylamino)-3-hydroxy-1H-quinazolin-2,4-dione 12, which possesses good affinity for high-affinity and low-affinity KA receptors (Ki=0.62 microM and 1.6 microM, respectively), as well as good selectivity. To rationalize the trend of affinities of the reported derivatives, an intensive molecular modeling study was carried out by docking compounds to models of the Gly/NMDA, AMPA, and KA receptors.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.