We propose an explanation of several experimental features of transport phenomena in the normal state of high Tc cuprates in terms of a spin-charge gauge theory of the 2D t-J model. The calculated doping-temperature dependence for a number of physical quantities is found in qualitative agreement with data. In particular, we recover: in the ``pseudogap phase'' the metal-insulator crossover of the in-plane resistivity and of the NMR ``relaxation time'' and the insulating behavior of the out-of-plane resistivity; in the ``strange metal phase'' (at higher temperature or doping) the linear in T behavior of the above quantities; the appearance of maxima in the in-plane far-infrared conductivity in strongly underdoped and overdoped samples.

Spin-charge gauge symmetry: A way to tackle HTS cuprates?

MARCHETTI, PIERALBERTO;
2006

Abstract

We propose an explanation of several experimental features of transport phenomena in the normal state of high Tc cuprates in terms of a spin-charge gauge theory of the 2D t-J model. The calculated doping-temperature dependence for a number of physical quantities is found in qualitative agreement with data. In particular, we recover: in the ``pseudogap phase'' the metal-insulator crossover of the in-plane resistivity and of the NMR ``relaxation time'' and the insulating behavior of the out-of-plane resistivity; in the ``strange metal phase'' (at higher temperature or doping) the linear in T behavior of the above quantities; the appearance of maxima in the in-plane far-infrared conductivity in strongly underdoped and overdoped samples.
2006
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1563273
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact