OBJECTIVE: Reactive oxygen species (ROS) play an ambivalent role in cardiomyocytes: low concentrations are involved in cellular signaling, while higher concentrations contribute to cellular injury. We studied ROS formation during increases in contraction frequency in isolated cardiomyocytes. METHODS: Rat ventricular cardiomyocytes were loaded with dichlorodihydrofluorescein and electrically stimulated (37 degrees C). ROS formation was assessed by the rate of oxidation-dependent fluorescence increase (OxR). Oxygen consumption (VO(2)) and NAD(P)H autofluorescence were measured in parallel experiments. RESULTS: Increases in contraction frequency were accompanied by an increase in VO(2) and a decrease in NAD(P)H fluorescence. OxR increased to 124+/-4%, 146+/-8%, 204+/-25% and 256+/-29% of OxR at baseline during 1, 2, 3 and 4 Hz stimulation, and subsequently returned to baseline values with 0.2 Hz. The OxR increase was dose-dependently inhibited by the antioxidant NAC (10 and 100 mM), but unaffected by the NO synthase inhibitor l-NAME (200 microM and 10 mM). The OxR increase was attenuated when myosin ATPase activity was inhibited by butanedione monoxime (BDM; 5 mM). CONCLUSION: Increased contraction frequency induces ROS formation in rat cardiomyocytes.
Formation of reactive oxygen species at increased contraction frequency in rat cardiomyocytes.
DI LISA, FABIO;
2006
Abstract
OBJECTIVE: Reactive oxygen species (ROS) play an ambivalent role in cardiomyocytes: low concentrations are involved in cellular signaling, while higher concentrations contribute to cellular injury. We studied ROS formation during increases in contraction frequency in isolated cardiomyocytes. METHODS: Rat ventricular cardiomyocytes were loaded with dichlorodihydrofluorescein and electrically stimulated (37 degrees C). ROS formation was assessed by the rate of oxidation-dependent fluorescence increase (OxR). Oxygen consumption (VO(2)) and NAD(P)H autofluorescence were measured in parallel experiments. RESULTS: Increases in contraction frequency were accompanied by an increase in VO(2) and a decrease in NAD(P)H fluorescence. OxR increased to 124+/-4%, 146+/-8%, 204+/-25% and 256+/-29% of OxR at baseline during 1, 2, 3 and 4 Hz stimulation, and subsequently returned to baseline values with 0.2 Hz. The OxR increase was dose-dependently inhibited by the antioxidant NAC (10 and 100 mM), but unaffected by the NO synthase inhibitor l-NAME (200 microM and 10 mM). The OxR increase was attenuated when myosin ATPase activity was inhibited by butanedione monoxime (BDM; 5 mM). CONCLUSION: Increased contraction frequency induces ROS formation in rat cardiomyocytes.File | Dimensione | Formato | |
---|---|---|---|
Frequency CVR 2006.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Accesso gratuito
Dimensione
413.44 kB
Formato
Adobe PDF
|
413.44 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.