We prove optimality principles for semicontinuous bounded viscosity solutions of Hamilton-Jacobi-Bellman equations. In particular, we provide a representation formula for viscosity supersolutions as value functions of suitable obstacle control problems. This result is applied to extend the Lyapunov direct method for stability to controlled Ito stochastic differential equations. We define the appropriate concept of the Lyapunov function to study stochastic open loop stabilizability in probability and local and global asymptotic stabilizability (or asymptotic controllability). Finally, we illustrate the theory with some examples.
Lyapunov stabilizability of controlled diffusions via a superoptimality principle for viscosity solutions
CESARONI, ANNALISA
2006
Abstract
We prove optimality principles for semicontinuous bounded viscosity solutions of Hamilton-Jacobi-Bellman equations. In particular, we provide a representation formula for viscosity supersolutions as value functions of suitable obstacle control problems. This result is applied to extend the Lyapunov direct method for stability to controlled Ito stochastic differential equations. We define the appropriate concept of the Lyapunov function to study stochastic open loop stabilizability in probability and local and global asymptotic stabilizability (or asymptotic controllability). Finally, we illustrate the theory with some examples.File | Dimensione | Formato | |
---|---|---|---|
AMO06.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso gratuito
Dimensione
278.79 kB
Formato
Adobe PDF
|
278.79 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.