A large variety of natural and synthetic polymers have been explored as scaffolds for the seeding and growth of different types of cells. To fabricate a scaffold that can be used as a synthetic extracellular matrix (ECM), it is important to replicate the nanoscale dimensions of natural ECM. The electrospinning process allows to produce Ultrathin fibers so that this method represents a suitable approach to scaffold fabrication for tissue engineering applications. In this work, the feasibility of obtaining flat or tubular matrices from biocompatible poly[(ethyl phenylalanato)(1.4) (ethyl glycinato)(0.6) phosphazene] by electrospinning was evaluated and the effect of process parameters on the diameter of nanofibers was examined. The adhesion and growth of rat neuromicrovascular endothelial cells cultured on sheets and tubes composed by the polymer with an average fiber diameter of 850 +/- 150 nm were also reported. Microscopic examination of the seeded tubes demonstrated that, after 16 days of incubation, endothelial cells formed a monolayer on the whole surface. These results are the first step to demonstrate that tubes of biodegradable polyphospliazenes might be a feasible model to construct human tissues such as vessels or cardiac valves.
Electrospun polyphosphazene nanofibers for in vitro rat endothelial cells proliferation
CONCONI, MARIA TERESA;BAIGUERA, SILVIA;GRANDI, CLAUDIO;PARNIGOTTO, PIER PAOLO
2007
Abstract
A large variety of natural and synthetic polymers have been explored as scaffolds for the seeding and growth of different types of cells. To fabricate a scaffold that can be used as a synthetic extracellular matrix (ECM), it is important to replicate the nanoscale dimensions of natural ECM. The electrospinning process allows to produce Ultrathin fibers so that this method represents a suitable approach to scaffold fabrication for tissue engineering applications. In this work, the feasibility of obtaining flat or tubular matrices from biocompatible poly[(ethyl phenylalanato)(1.4) (ethyl glycinato)(0.6) phosphazene] by electrospinning was evaluated and the effect of process parameters on the diameter of nanofibers was examined. The adhesion and growth of rat neuromicrovascular endothelial cells cultured on sheets and tubes composed by the polymer with an average fiber diameter of 850 +/- 150 nm were also reported. Microscopic examination of the seeded tubes demonstrated that, after 16 days of incubation, endothelial cells formed a monolayer on the whole surface. These results are the first step to demonstrate that tubes of biodegradable polyphospliazenes might be a feasible model to construct human tissues such as vessels or cardiac valves.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.