We implement a general numerical calculation that allows for a direct comparison between nonlinear Hamiltonian dynamics and the Boltzmann-Gibbs canonical distribution in Gibbs iota-space. Using paradigmatic first-neighbor models, namely, the inertial XY ferromagnet and the Fermi-Pasta-Ulam beta-model, we show that at intermediate energies the Boltzmann-Gibbs equilibrium distribution is a consequence of Newton second law (F=ma). At higher energies we discuss partial agreement between time and ensemble averages.

Boltzmann-Gibbs thermal equilibrium distribution for classical systems and Newton law: a computational discussion

BALDOVIN, FULVIO;
2006

Abstract

We implement a general numerical calculation that allows for a direct comparison between nonlinear Hamiltonian dynamics and the Boltzmann-Gibbs canonical distribution in Gibbs iota-space. Using paradigmatic first-neighbor models, namely, the inertial XY ferromagnet and the Fermi-Pasta-Ulam beta-model, we show that at intermediate energies the Boltzmann-Gibbs equilibrium distribution is a consequence of Newton second law (F=ma). At higher energies we discuss partial agreement between time and ensemble averages.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1560166
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact