The number of XML documents produced and available on the Internet is steadily increasing. It is thus important to devise automatic procedures to extract useful information from them with little or no intervention by a human operator. In this paper, we investigate the efficacy of an unsupervised learning approach, namely self-organising maps (SOMs), for the automatic clustering of XML documents. Specifically, we consider a relatively large corpus of XML formatted data from the INEX initiative and evaluate it using two different self-organising map models. The first model is the classical SOM model, and it requires the XML documents to be represented by real-valued vectors, obtained using a "bag of words" (or better a "bag of tags") approach. The other model is the SOM for structured data (SOM-SD) approach which is able to cluster structured data, and it is possible to feed the model with tree structured representations of the XML documents, thus explicitly preserving the structural information in the documents. The experimental results show that the SOM model exhibits quite a poor performance on this problem domain which requires the ability to encode structural properties of the data. The SOM-SD model, on the other hand, is able to produce a good clustering and generalization performance.

A Self-Organising Map Approach for Clustering of XML Documents

SPERDUTI, ALESSANDRO;
2006

Abstract

The number of XML documents produced and available on the Internet is steadily increasing. It is thus important to devise automatic procedures to extract useful information from them with little or no intervention by a human operator. In this paper, we investigate the efficacy of an unsupervised learning approach, namely self-organising maps (SOMs), for the automatic clustering of XML documents. Specifically, we consider a relatively large corpus of XML formatted data from the INEX initiative and evaluate it using two different self-organising map models. The first model is the classical SOM model, and it requires the XML documents to be represented by real-valued vectors, obtained using a "bag of words" (or better a "bag of tags") approach. The other model is the SOM for structured data (SOM-SD) approach which is able to cluster structured data, and it is possible to feed the model with tree structured representations of the XML documents, thus explicitly preserving the structural information in the documents. The experimental results show that the SOM model exhibits quite a poor performance on this problem domain which requires the ability to encode structural properties of the data. The SOM-SD model, on the other hand, is able to produce a good clustering and generalization performance.
2006
Proceedings of the International Joint Conference on Neural Networks, IJCNN 2006, part of the IEEE World Congress on Computational Intelligence, WCCI 2006, Vancouver, BC, Canada, 16-21 July 2006
0780394909
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1557990
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact