Fractional diffusions arise in the study of models from population dynamics. In this paper, we derive a class of integro-differential reaction-diffusion equations from simple principles. We then prove an approximation result for the first eigenvalue of linear integro-differential operators of the fractional diffusion type, and we study from that the dynamics of a population in a fragmented environment with fractional diffusion.

The periodic patch model for population dynamics with fractional diffusion

ROSSI, LUCA
2011

Abstract

Fractional diffusions arise in the study of models from population dynamics. In this paper, we derive a class of integro-differential reaction-diffusion equations from simple principles. We then prove an approximation result for the first eigenvalue of linear integro-differential operators of the fractional diffusion type, and we study from that the dynamics of a population in a fragmented environment with fractional diffusion.
File in questo prodotto:
File Dimensione Formato  
BRR.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Accesso libero
Dimensione 223.76 kB
Formato Adobe PDF
223.76 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/154414
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 39
  • OpenAlex ND
social impact