A new method for highly efficient measurements of the ionization statistics in small, wall-less, well-defined low density gas samples is proposed. It is based on counting ions, induced by radiation in a sensitive gas volume. The high resolution permits the measurement of spatial correlations between the number of ions induced in two distanced small sensitive volumes. Using tissue- or solid-equivalent gases, the method allows the accurate determination of the ionization statistics in the corresponding sub-nanometer volume of condensed matter. These data are of relevance to the modeling of microscopic phenomena related to the interaction of radiation with matter, such as in nanodosimetry and studies of radiation damage to solid state devices.

Ionization measurements in small gas samples by single ion counting

DE NARDO, LAURA;TORNIELLI, GIORGIO
1996

Abstract

A new method for highly efficient measurements of the ionization statistics in small, wall-less, well-defined low density gas samples is proposed. It is based on counting ions, induced by radiation in a sensitive gas volume. The high resolution permits the measurement of spatial correlations between the number of ions induced in two distanced small sensitive volumes. Using tissue- or solid-equivalent gases, the method allows the accurate determination of the ionization statistics in the corresponding sub-nanometer volume of condensed matter. These data are of relevance to the modeling of microscopic phenomena related to the interaction of radiation with matter, such as in nanodosimetry and studies of radiation damage to solid state devices.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/154268
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 14
  • OpenAlex ND
social impact