Titanium nitride films were produced on silicon substrate by ion beam assisted deposition in the alternate mode: first, thin titanium layers were deposited by electron beam evaporation and then titanium nitride was formed by nitrogen implantation at room temperature; this cycle was then iterated many times in order to obtain thicker titanium nitride layers. The obtained films were characterized with respect to atomic composition by Rutherford backscattering spectrometry and nuclear reaction analysis techniques, while chemical bonding was investigated by Auger line-shape analysis. We observe that nitrogen implantation, along with the production of titanium nitride, induces silicon migration into the film. Silicon transport is connected to point defects produced by ion implantation as well as by chemical driving forces associated with silicides formation.
Surface and interface analysis of titanium nitride diffusion barriers
ROMANATO, FILIPPO;DRIGO, ANTONIO;CARNERA, ALBERTO
1994
Abstract
Titanium nitride films were produced on silicon substrate by ion beam assisted deposition in the alternate mode: first, thin titanium layers were deposited by electron beam evaporation and then titanium nitride was formed by nitrogen implantation at room temperature; this cycle was then iterated many times in order to obtain thicker titanium nitride layers. The obtained films were characterized with respect to atomic composition by Rutherford backscattering spectrometry and nuclear reaction analysis techniques, while chemical bonding was investigated by Auger line-shape analysis. We observe that nitrogen implantation, along with the production of titanium nitride, induces silicon migration into the film. Silicon transport is connected to point defects produced by ion implantation as well as by chemical driving forces associated with silicides formation.File | Dimensione | Formato | |
---|---|---|---|
Surface and Interface Analysis of Titanium Nitride Diffusion Barriers.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Accesso gratuito
Dimensione
428 kB
Formato
Adobe PDF
|
428 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.