Compositional control on the annealing kinetics of fission-tracks (FT) in apatite requires routine measurement of sample grain composition. However, for practical reasons the bulk composition of analysed grains is not routinely measured and instead grain chlorine content or etch-pit dimensions are used to characterise a samples annealing behaviour. A more desirable approach is to measure crystallographic parameters (i.e. unit cell dimension) of a grain as these represent the summed effect of all substitutions and crystal defects. We show how Raman microspectrometry can be used as a routine non-destructive tool to obtain rapid measurement of the crystallographic structure of apatite grains etched for FT analysis. Variations of unit cell parameter a are found to correspond to a systematic variation of Raman shift in the range of 452–440 cm−1 for measurements made on c-parallel sections of apatite where the direction of the polarized incident beam is parallel to the c axis.

Raman microspectroscopy: a non-destructive tool for routine calibration of apatite crystallographic structure for fission-track analyses

ZATTIN, MASSIMILIANO;
2007

Abstract

Compositional control on the annealing kinetics of fission-tracks (FT) in apatite requires routine measurement of sample grain composition. However, for practical reasons the bulk composition of analysed grains is not routinely measured and instead grain chlorine content or etch-pit dimensions are used to characterise a samples annealing behaviour. A more desirable approach is to measure crystallographic parameters (i.e. unit cell dimension) of a grain as these represent the summed effect of all substitutions and crystal defects. We show how Raman microspectrometry can be used as a routine non-destructive tool to obtain rapid measurement of the crystallographic structure of apatite grains etched for FT analysis. Variations of unit cell parameter a are found to correspond to a systematic variation of Raman shift in the range of 452–440 cm−1 for measurements made on c-parallel sections of apatite where the direction of the polarized incident beam is parallel to the c axis.
2007
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/152040
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact