This paper presents a set of REDUCE procedures that make a number of existing higher-order asymptotic results available for both theoretical and practical research. Attention has been restricted to the context of exact and approximate inference for a parameter of interest conditionally either on an ancillary statistic or on a statistic partially sufficient for the nuisance parameter. In particular, the procedures apply to regression-scale models and multiparameter exponential families. Most of them support algebraic computation as well as numerical calculation for a given data set. Examples illustrate the code.
A computer algebra package for approximate conditional inference
BRAZZALE, ALESSANDRA ROSALBA
2001
Abstract
This paper presents a set of REDUCE procedures that make a number of existing higher-order asymptotic results available for both theoretical and practical research. Attention has been restricted to the context of exact and approximate inference for a parameter of interest conditionally either on an ancillary statistic or on a statistic partially sufficient for the nuisance parameter. In particular, the procedures apply to regression-scale models and multiparameter exponential families. Most of them support algebraic computation as well as numerical calculation for a given data set. Examples illustrate the code.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.