We consider problems requiring to allocate a set of rectangular items to larger rectangular standardized units by minimizing the waste. In two-dimensional bin packing problems these units are finite rectangles, and the objective is to pack all the items into the minimum number of units, while in two-dimensional strip packing problems there is a single standardized unit of given width, and the objective is to pack all the items within the minimum height. We discuss mathematical models, and survey lower bounds, classical approximation algorithms, recent heuristic and metaheuristic methods and exact enumerative approaches. The relevant special cases where the items have to be packed into rows forming levels are also discussed in detail.
Two-Dimensional Packing Problems: a Survey
MONACI, MICHELE
2002
Abstract
We consider problems requiring to allocate a set of rectangular items to larger rectangular standardized units by minimizing the waste. In two-dimensional bin packing problems these units are finite rectangles, and the objective is to pack all the items into the minimum number of units, while in two-dimensional strip packing problems there is a single standardized unit of given width, and the objective is to pack all the items within the minimum height. We discuss mathematical models, and survey lower bounds, classical approximation algorithms, recent heuristic and metaheuristic methods and exact enumerative approaches. The relevant special cases where the items have to be packed into rows forming levels are also discussed in detail.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.