Hyperthermia plays an important role in oncological therapies, most often being used in combination with radiotherapy, chemotherapy and immunotherapy. The success of this therapy is strongly dependent on the precision and control of thermal deposition. Hyperthermia based on induction heating, with thermally self-regulating thermoseeds inserted into the tumorous mass, is used for interstitial treatment. The technique was the subject of the numerical study presented in the paper. The analysis was carried out using coupled electromagnetic heating and thermo-fluid dynamic FEM simulations. During thermal deposition by induction heating of inserted seeds, the simulations estimated the thermal field inside and outside the tumour, as well as the sensitivity of the thermal field to variations regarding seed temperature, configuration and proximity to vessels. The method, for which accurate anatomical patient's information is essential, is suitable for providing useful qualitative and quantitative information about thermal transients and power density distribution for hyperthermic treatment. Several grid steps were analysed and compared. A 1 cm seed grid was resulted in good homogeneity and effectiveness of the thermal deposition. The cold spot effect caused by large vessels was demonstrated and quantified. Simulations of the heating of a tumorous mass in the liver showed that an indcutor generator operating at 200 kHz frequency and 500 A current, producing a pulsating magnetic field of H = 60 A cm(-1), was adequate for the treatment. The seeds that perform best among those tested (Nicu (28% Cu), PdNi (27.2% Ni), PdCo (6.15% Co) and ferrite core) were the PdNi (1 mm radius, 10 mm length), as they have a low Curie temperature (52degreesC), which is the closest to the desired treatment temperature and thus reduces the risk of hot spots.
Numerical simulation of induction heating thermal disposition for oncological hyperthermic treatment
DUGHIERO, FABRIZIO;
2005
Abstract
Hyperthermia plays an important role in oncological therapies, most often being used in combination with radiotherapy, chemotherapy and immunotherapy. The success of this therapy is strongly dependent on the precision and control of thermal deposition. Hyperthermia based on induction heating, with thermally self-regulating thermoseeds inserted into the tumorous mass, is used for interstitial treatment. The technique was the subject of the numerical study presented in the paper. The analysis was carried out using coupled electromagnetic heating and thermo-fluid dynamic FEM simulations. During thermal deposition by induction heating of inserted seeds, the simulations estimated the thermal field inside and outside the tumour, as well as the sensitivity of the thermal field to variations regarding seed temperature, configuration and proximity to vessels. The method, for which accurate anatomical patient's information is essential, is suitable for providing useful qualitative and quantitative information about thermal transients and power density distribution for hyperthermic treatment. Several grid steps were analysed and compared. A 1 cm seed grid was resulted in good homogeneity and effectiveness of the thermal deposition. The cold spot effect caused by large vessels was demonstrated and quantified. Simulations of the heating of a tumorous mass in the liver showed that an indcutor generator operating at 200 kHz frequency and 500 A current, producing a pulsating magnetic field of H = 60 A cm(-1), was adequate for the treatment. The seeds that perform best among those tested (Nicu (28% Cu), PdNi (27.2% Ni), PdCo (6.15% Co) and ferrite core) were the PdNi (1 mm radius, 10 mm length), as they have a low Curie temperature (52degreesC), which is the closest to the desired treatment temperature and thus reduces the risk of hot spots.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.