The nutrient emission model MONERIS (MOdelling Nutrient Emissions into River Systems) is applied to the Po catchment, a large (>70,000 km2), densely populated, highly agriculturally exploited and industrialized landscape. The catchment is located in northern Italy. The Po River discharges into the northwestern Adriatic Sea. Model runs cover the period 1991–2000. The purpose is to model the catchment in 2001, estimating nutrient emissions and natural background in the basin and loads to the coastal area. The model was calibrated with data for the period 1990–1995. After validation with data for the period 1995–2000, the model is used to evaluate future catchment management scenarios. MONERIS is a spatially distributed parameters steady state model with a time scale of 5 years. The emissions considered are originated from diffuse and point sources and delivered trough various pathways (groundwater, erosion, overland flow, atmospheric deposition, urban systems and WWTPs). In order to estimate nutrient loads to the river system, MONERIS includes a retention model. An overview of model input requirements, data needs and related problems and solutions adopted is presented in the paper. Simulated and measured data of several sections along the river are compared for calibration and validation. The relative importance of different nutrient generation pathways are evaluated. Finally, forecasted yearly nutrient loads at the outlet of PO basin for the years 2001, 2008 and 2016, consequence of different basin management scenarios, are presented. The results are ready to be supplied to a water quality Coastal Zone Model, allowing us to evaluate significant switches in trophic state conditions of the coastal ecosystem.

Nutrient emissions from river systems to coastal areas. A model application to the Po river (Italy)

PALMERI, LUCA;
2004

Abstract

The nutrient emission model MONERIS (MOdelling Nutrient Emissions into River Systems) is applied to the Po catchment, a large (>70,000 km2), densely populated, highly agriculturally exploited and industrialized landscape. The catchment is located in northern Italy. The Po River discharges into the northwestern Adriatic Sea. Model runs cover the period 1991–2000. The purpose is to model the catchment in 2001, estimating nutrient emissions and natural background in the basin and loads to the coastal area. The model was calibrated with data for the period 1990–1995. After validation with data for the period 1995–2000, the model is used to evaluate future catchment management scenarios. MONERIS is a spatially distributed parameters steady state model with a time scale of 5 years. The emissions considered are originated from diffuse and point sources and delivered trough various pathways (groundwater, erosion, overland flow, atmospheric deposition, urban systems and WWTPs). In order to estimate nutrient loads to the river system, MONERIS includes a retention model. An overview of model input requirements, data needs and related problems and solutions adopted is presented in the paper. Simulated and measured data of several sections along the river are compared for calibration and validation. The relative importance of different nutrient generation pathways are evaluated. Finally, forecasted yearly nutrient loads at the outlet of PO basin for the years 2001, 2008 and 2016, consequence of different basin management scenarios, are presented. The results are ready to be supplied to a water quality Coastal Zone Model, allowing us to evaluate significant switches in trophic state conditions of the coastal ecosystem.
2004
European Geosciences Union, 1st General Assembly
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1469983
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact