Silica films co-implanted with Er and Au ions show an enhancement of rare earth photoluminescence after gold introduction in the matrix. Er excitation originates in a broad spectral region, from the red to the near ultraviolet. We have investigated the influence of gold aggregation on the optical properties of co-doped samples by varying the temperature of post-Au implantation annealing in the 400-900 degrees C range. Optical measurements and extended x-ray absorption analysis support the hypothesis of an energy transfer process mediated by sub-nanometric Au aggregates with metallic character that are optically activated mostly through electron interband transitions between d and sp-conduction levels.

Sub-nanometric metallic Au clusters as efficient Er3+ sensitizers in silica

TRAVE, ENRICO;MATTEI, GIOVANNI;MAZZOLDI, PAOLO;PELLEGRINI, GIOVANNI;SCIAN, CARLO;MAURIZIO, CHIARA;
2006

Abstract

Silica films co-implanted with Er and Au ions show an enhancement of rare earth photoluminescence after gold introduction in the matrix. Er excitation originates in a broad spectral region, from the red to the near ultraviolet. We have investigated the influence of gold aggregation on the optical properties of co-doped samples by varying the temperature of post-Au implantation annealing in the 400-900 degrees C range. Optical measurements and extended x-ray absorption analysis support the hypothesis of an energy transfer process mediated by sub-nanometric Au aggregates with metallic character that are optically activated mostly through electron interband transitions between d and sp-conduction levels.
2006
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/144259
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 73
  • OpenAlex ND
social impact