Bovine alpha-lactalbumin (alpha-LA) is an alpha/beta protein which adopts partly folded states when dissolved at low pH (A-state), by removal of the protein-bound calcium at neutral pH and low salt concentration (apo-state), as well as in aqueous trifluoroethanol. Previous spectroscopic studies have indicated that the A-state of alpha-LA at pH 2.0, considered a prototype molten globule, has a native-like fold in which the helical core is mostly retained, while the beta subdomain is less structured. Here, we investigate the conformational features of three derivatives of alpha-LA characterized by a single peptide bond fission or a deletion of 12 or 19/22 amino-acid residues of the beta subdomain of the native protein (approximately from residue 34 to 57). These alpha-LA derivatives were obtained by limited proteolysis of the protein in its partly folded state(s). A nicked alpha-LA species consisting of fragments 1-,3-40 and 41-123 (nicked-LA) was prepared by thermolytic digestion of the 123-residue chain of alpha-LA in 50% (v/v) aqueous trifluoroethanol. Two truncated or gapped protein species given by fragments 1-40 and 53-123 (desbeta1-LA) or fragments 1-34 and 54-,57-123 (desbeta2-LA) were obtained by digestion of alpha-LA with pepsin in acid or with proteinase K at neutral pH in its apo-state, respectively. The two protein fragments of nicked or gapped alpha-LA are covalently linked by the four disulfide bridges of the native protein. CD measurements revealed that, in aqueous solution at neutral pH and in the presence of calcium, the three protein species maintain the helical secondary structure of intact alpha-LA, while the tertiary structure is strongly affected by the proteolytic cleavages of the chain. Temperature effects of CD signals in the far- and near-UV region reveal a much more labile tertiary structure in the alpha-LA derivatives, while the secondary structure is mostly retained even upon heating. In acid solution at pH 2.0, the three alpha-LA variants adopt a conformational state essentially identical to the molten globule displayed by intact alpha-LA, as demonstrated by CD measurements. Moreover, they bind strongly the fluorescent dye 8-anilinonaphthalene-1-sulfonate, which is considered a diagnostic feature of the molten globule of proteins. Therefore, the beta subdomain can be removed from the alpha-LA molecule without impairing the capability of the rest of the chain to adopt a molten globule state. The results of this protein dissection study provide direct experimental evidence that in the alpha-LA molten globule only the alpha domain is structured.

Stepwise Proteolytic Removal of the beta-Subdomain in alfa-Lactalbumin: The Protein Remains Folded and Can Form the Molten Globule.

POLVERINO DE LAURETO, PATRIZIA;FRARE, ERICA;FONTANA, ANGELO
2001

Abstract

Bovine alpha-lactalbumin (alpha-LA) is an alpha/beta protein which adopts partly folded states when dissolved at low pH (A-state), by removal of the protein-bound calcium at neutral pH and low salt concentration (apo-state), as well as in aqueous trifluoroethanol. Previous spectroscopic studies have indicated that the A-state of alpha-LA at pH 2.0, considered a prototype molten globule, has a native-like fold in which the helical core is mostly retained, while the beta subdomain is less structured. Here, we investigate the conformational features of three derivatives of alpha-LA characterized by a single peptide bond fission or a deletion of 12 or 19/22 amino-acid residues of the beta subdomain of the native protein (approximately from residue 34 to 57). These alpha-LA derivatives were obtained by limited proteolysis of the protein in its partly folded state(s). A nicked alpha-LA species consisting of fragments 1-,3-40 and 41-123 (nicked-LA) was prepared by thermolytic digestion of the 123-residue chain of alpha-LA in 50% (v/v) aqueous trifluoroethanol. Two truncated or gapped protein species given by fragments 1-40 and 53-123 (desbeta1-LA) or fragments 1-34 and 54-,57-123 (desbeta2-LA) were obtained by digestion of alpha-LA with pepsin in acid or with proteinase K at neutral pH in its apo-state, respectively. The two protein fragments of nicked or gapped alpha-LA are covalently linked by the four disulfide bridges of the native protein. CD measurements revealed that, in aqueous solution at neutral pH and in the presence of calcium, the three protein species maintain the helical secondary structure of intact alpha-LA, while the tertiary structure is strongly affected by the proteolytic cleavages of the chain. Temperature effects of CD signals in the far- and near-UV region reveal a much more labile tertiary structure in the alpha-LA derivatives, while the secondary structure is mostly retained even upon heating. In acid solution at pH 2.0, the three alpha-LA variants adopt a conformational state essentially identical to the molten globule displayed by intact alpha-LA, as demonstrated by CD measurements. Moreover, they bind strongly the fluorescent dye 8-anilinonaphthalene-1-sulfonate, which is considered a diagnostic feature of the molten globule of proteins. Therefore, the beta subdomain can be removed from the alpha-LA molecule without impairing the capability of the rest of the chain to adopt a molten globule state. The results of this protein dissection study provide direct experimental evidence that in the alpha-LA molten globule only the alpha domain is structured.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/144215
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 20
  • OpenAlex ND
social impact