This paper describes a model for motorcycle tires based on a physical interpretation of experimental data. In this model the real shape of the tire carcass is accurately described and its deformability is taken into account. The actual position of the contact point, that is, the center of the contact patch, is calculated. The concept of instantaneous slip is defined by calculating the longitudinal slip and sideslip angles using the velocity of the actual contact point, which moves with respect to the rim. Tire forces and torques are applied on the actual contact point and calculated according to Pacejka's magic formula. The coupling of sliding properties with elastic ones and the use of the instantaneous slip concept make it possible to properly describe both steady state and transient behavior using the same relations, thus avoiding the use of any auxiliary equations.
A motorcycle tire model for dynamic simulations: Theoretical and experimental aspects
LOT, ROBERTO
2004
Abstract
This paper describes a model for motorcycle tires based on a physical interpretation of experimental data. In this model the real shape of the tire carcass is accurately described and its deformability is taken into account. The actual position of the contact point, that is, the center of the contact patch, is calculated. The concept of instantaneous slip is defined by calculating the longitudinal slip and sideslip angles using the velocity of the actual contact point, which moves with respect to the rim. Tire forces and torques are applied on the actual contact point and calculated according to Pacejka's magic formula. The coupling of sliding properties with elastic ones and the use of the instantaneous slip concept make it possible to properly describe both steady state and transient behavior using the same relations, thus avoiding the use of any auxiliary equations.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.