We formulate and provide a solution to an approximation problem that occurs in various settings: Finding an optimal additive decomposition of a given Hermitian Hilbert–Schmidt operator, in a term commuting with a second Hermitian compact operator and a term as small as possible in the trace norm sense. In the finite-dimensional case, we show how to interpret our result through a Sylvester equation. An application to a quantum information problem and an interpretation in quantum probability are also sketched.

Optimal commuting approximation of Hermitian operators

TICOZZI, FRANCESCO
2005

Abstract

We formulate and provide a solution to an approximation problem that occurs in various settings: Finding an optimal additive decomposition of a given Hermitian Hilbert–Schmidt operator, in a term commuting with a second Hermitian compact operator and a term as small as possible in the trace norm sense. In the finite-dimensional case, we show how to interpret our result through a Sylvester equation. An application to a quantum information problem and an interpretation in quantum probability are also sketched.
File in questo prodotto:
File Dimensione Formato  
Ticozzi_LAA-2005.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 179.73 kB
Formato Adobe PDF
179.73 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1431703
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact