We show that the Maximum Entropy Principle (MEP) (Phys. Rev. 106 (Part I and 11) (1957) 620-630; Phys. Rev. 108 (1957) 171-630), when considered as a constrained extremization problem, defines in a natural way a Morse Family and a related isotropic (Lagrangian in the finite-dimensional case) submanifold of an infinite-dimensional linear symplectic space. This geometric approach becomes useful when dealing with the MEP with nonlinear constraints and it allows to derive Onsager-like reciprocity relations as a consequence of the isotropy.

Isotropic submanifolds generated by the Maximum Entropy principle and Onsager reciprocity relations

FAVRETTI, MARCO
2005

Abstract

We show that the Maximum Entropy Principle (MEP) (Phys. Rev. 106 (Part I and 11) (1957) 620-630; Phys. Rev. 108 (1957) 171-630), when considered as a constrained extremization problem, defines in a natural way a Morse Family and a related isotropic (Lagrangian in the finite-dimensional case) submanifold of an infinite-dimensional linear symplectic space. This geometric approach becomes useful when dealing with the MEP with nonlinear constraints and it allows to derive Onsager-like reciprocity relations as a consequence of the isotropy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1423210
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact