This paper provides an extension of the Dynamic Conditional Correlation model of Engle (2002) by allowing both the unconditional correlation and the parameters to be driven by an unobservable Markov chain. We provide the estimation algorithm and perform an empirical analysis of the contagion phenomenon in which our model is compared to the traditional CCC and DCC representations.
Multivariate Markov switching dynamic conditional correlation GARCH representations for contagion analysis
CAPORIN, MASSIMILIANO
2005
Abstract
This paper provides an extension of the Dynamic Conditional Correlation model of Engle (2002) by allowing both the unconditional correlation and the parameters to be driven by an unobservable Markov chain. We provide the estimation algorithm and perform an empirical analysis of the contagion phenomenon in which our model is compared to the traditional CCC and DCC representations.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.