Abstract: This work extends the analysis of Baillie, Bollerslev and Mikkelsen (1996) and Bollerslev and Mikkelsen (1996) on the estimation and identification problems of the Fractionally Integrated Generalized Autoregressive Conditional Heteroskedastik (FIGARCH) model.We assess the power of different information criteria and tests in identifying the presence of long memory in the conditional variances. The analysis is performed with a Montecarlo simulation study. In detail, the focus on the Akaike, Hannan-Quinn, Shibata and Schwarz information criteria and on the Jarque-Bera test for normality, Box-Pierce test for residual correlation and Engle test for ARCH effects. This study verifies that information criteria clearly distinguish the presence of long memory while tests do not evidence any difference between the fitted long and short memory models. An empirical application is provided; it analyses, on a high frequency dataset, the returns of the FIB30, the future on the MIB30, the Italian stock market index of highly capitalized firms.

Identification of Long memory in GARCH models

CAPORIN, MASSIMILIANO
2003

Abstract

Abstract: This work extends the analysis of Baillie, Bollerslev and Mikkelsen (1996) and Bollerslev and Mikkelsen (1996) on the estimation and identification problems of the Fractionally Integrated Generalized Autoregressive Conditional Heteroskedastik (FIGARCH) model.We assess the power of different information criteria and tests in identifying the presence of long memory in the conditional variances. The analysis is performed with a Montecarlo simulation study. In detail, the focus on the Akaike, Hannan-Quinn, Shibata and Schwarz information criteria and on the Jarque-Bera test for normality, Box-Pierce test for residual correlation and Engle test for ARCH effects. This study verifies that information criteria clearly distinguish the presence of long memory while tests do not evidence any difference between the fitted long and short memory models. An empirical application is provided; it analyses, on a high frequency dataset, the returns of the FIB30, the future on the MIB30, the Italian stock market index of highly capitalized firms.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1421662
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact