In this paper we review our research work of the last few years on the synthesis and the gas sensing properties of nanocomposite thin films of sensitive materials with a large specific surface area, which consist of porous matrices containing functional nanocrystals of metal oxides and gold. The film porosity provides a path for the gas molecules to reach the active reaction sites on the nanoparticles surface undergoing chemical reactions which nature depends on the nature of the active material. The introduction of Au nanoparticles affects the reactions mechanism improving the sensing process, moreover the Au Surface Plasmon Resonance peak can be used for the realization of selective optical gas sensor. Two different synthetic approaches will be described, each of them characterized by a peculiar control of the final materials morphology, structure and micro-structure.
Gold nanoparticles to boost the gas sensing performance of porous sol–gel thin films
DELLA GASPERA, ENRICO;BUSO, DARIO;MARTUCCI, ALESSANDRO
2011
Abstract
In this paper we review our research work of the last few years on the synthesis and the gas sensing properties of nanocomposite thin films of sensitive materials with a large specific surface area, which consist of porous matrices containing functional nanocrystals of metal oxides and gold. The film porosity provides a path for the gas molecules to reach the active reaction sites on the nanoparticles surface undergoing chemical reactions which nature depends on the nature of the active material. The introduction of Au nanoparticles affects the reactions mechanism improving the sensing process, moreover the Au Surface Plasmon Resonance peak can be used for the realization of selective optical gas sensor. Two different synthetic approaches will be described, each of them characterized by a peculiar control of the final materials morphology, structure and micro-structure.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.