For evolutive Hamilton-Jacobi equations, we propose a refined definition of C 0-variational solution, adapted to Cauchy problems for continuous initial data. This weaker framework enables us to investigate the semigroup property for these solutions. In the case of p-convex Hamiltonians, when variational solutions are known to be identical to viscosity solutions, we verify directly the semigroup property by using minmax techniques. In the nonconvex case, we construct a first explicit evolutive example where minmax and viscosity solutions are different. Provided the initial data allow for the separation of variables, we also detect the semigroup property for convex-concave Hamiltonians. In this case, and for general initial data, we finally give new upper and lower Hopf-type estimates for the variational solutions.

On C 0-variational solutions for Hamilton-Jacobi equations

BERNARDI, OLGA;CARDIN, FRANCO
2011

Abstract

For evolutive Hamilton-Jacobi equations, we propose a refined definition of C 0-variational solution, adapted to Cauchy problems for continuous initial data. This weaker framework enables us to investigate the semigroup property for these solutions. In the case of p-convex Hamiltonians, when variational solutions are known to be identical to viscosity solutions, we verify directly the semigroup property by using minmax techniques. In the nonconvex case, we construct a first explicit evolutive example where minmax and viscosity solutions are different. Provided the initial data allow for the separation of variables, we also detect the semigroup property for convex-concave Hamiltonians. In this case, and for general initial data, we finally give new upper and lower Hopf-type estimates for the variational solutions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/139416
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex ND
social impact