Abstract Adiabatic calorimetry is a technique that has been introduced as an important approach to hazard evaluation of exothermically reactive systems. In this paper the free radical polymerization of methyl methacrylate (MMA) has been studied. One of the most important aspects of MMA polymerization is its exothermicity and autoaccelerating behaviour, these characteristics can generate the occurrence of a runaway reaction. In a runaway situation the reacting system is close to adiabatic behaviour because it is unable to eliminate the heat that is being generated. An even worse situation can be reproduced in the laboratory with the Phi-Tec pseudo-adiabatic calorimeter. Process design parameters that are usually calculated from thermodynamic data or using semiempirical rules, such as adiabatic temperature rise or maximum attainable pressure, can be directly determined. The existence of the ceiling temperature has been experimentally demonstrated.

The use of adiabatic calorimetry for the process analysis and safety evaluation in free radical polymerization

MASCHIO, GIUSEPPE;
1999

Abstract

Abstract Adiabatic calorimetry is a technique that has been introduced as an important approach to hazard evaluation of exothermically reactive systems. In this paper the free radical polymerization of methyl methacrylate (MMA) has been studied. One of the most important aspects of MMA polymerization is its exothermicity and autoaccelerating behaviour, these characteristics can generate the occurrence of a runaway reaction. In a runaway situation the reacting system is close to adiabatic behaviour because it is unable to eliminate the heat that is being generated. An even worse situation can be reproduced in the laboratory with the Phi-Tec pseudo-adiabatic calorimeter. Process design parameters that are usually calculated from thermodynamic data or using semiempirical rules, such as adiabatic temperature rise or maximum attainable pressure, can be directly determined. The existence of the ceiling temperature has been experimentally demonstrated.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/137701
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
  • OpenAlex ND
social impact