Four synthetic ion-exchange resins (AH, BH, CH, DH) of different hydrophilic/hydrophobic properties were used as supports for heterogeneous palladium catalysts (A, B, C, D). The resins contained styrene (STY) and 2-(methacryloxy)ethylsulfonic acid (MESA) as the comonomers. Either divinylbenzene (DVB: CH, DH resins) or N,N'-methylenebisacrylamide (MBAA: AH, BH resins) were used as the cross-linker. AH contained also N,N-dimethylacrylamide (DMAA) as the third comonomer. The catalysts (Pd 0.25 - 0.45 % w/w) were obtained by ion-exchanging the acidic forms of the resins with [Pd(OAc)(2)] and reducing palladium(II) with excess sodium borohydride. The use of NaBH4 also ensured the neutralization of the acidic sites of the supports. No effect of the hydrophilic/hydrophobic properties of the supports was observed in the hydrogenation of cyclohexene and 2-cyclohexen-1-one in methanol, at 25 degrees C and 0.5, 1, and 1.5 MPa, respectively. However, catalysts A and B, containing amido groups provided by either DMAA or MBAA, proved to be more active than C and D. The observed activity enhancement was directly proportional to the nitrogen/palladium molar ratio in the catalysts. This finding suggests that amido groups promote palladium through a direct interaction with the metal surface.
Activity Enhancement by the Support in the Hydrogenation of C=C Bonds over Polymer-Supported Palladium Catalysts
ZECCA, MARCO;PALMA, GIANCARLO;
2000
Abstract
Four synthetic ion-exchange resins (AH, BH, CH, DH) of different hydrophilic/hydrophobic properties were used as supports for heterogeneous palladium catalysts (A, B, C, D). The resins contained styrene (STY) and 2-(methacryloxy)ethylsulfonic acid (MESA) as the comonomers. Either divinylbenzene (DVB: CH, DH resins) or N,N'-methylenebisacrylamide (MBAA: AH, BH resins) were used as the cross-linker. AH contained also N,N-dimethylacrylamide (DMAA) as the third comonomer. The catalysts (Pd 0.25 - 0.45 % w/w) were obtained by ion-exchanging the acidic forms of the resins with [Pd(OAc)(2)] and reducing palladium(II) with excess sodium borohydride. The use of NaBH4 also ensured the neutralization of the acidic sites of the supports. No effect of the hydrophilic/hydrophobic properties of the supports was observed in the hydrogenation of cyclohexene and 2-cyclohexen-1-one in methanol, at 25 degrees C and 0.5, 1, and 1.5 MPa, respectively. However, catalysts A and B, containing amido groups provided by either DMAA or MBAA, proved to be more active than C and D. The observed activity enhancement was directly proportional to the nitrogen/palladium molar ratio in the catalysts. This finding suggests that amido groups promote palladium through a direct interaction with the metal surface.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.