In this paper we analyse a stochastic volatility model that is an extension of the traditional Black-Scholes one. We price European options on several assets by using a superstrategy approach. We characterize the Markov superstrategies, and show that they are linked to a nonlinear PDE, called the Black-Scholes-Barenblatt (BSB) equation. This equation is the Hamilton-Jacobi-Bellman equation of an optimal control problem, which has a nice financial interpretation. Then we analyse the optimization problem included in the BSB equation and give some sufficient conditions for reduction of the BSB equation to a linear Black-Scholes equation. Some examples are given.

Robustness of the Black-Scholes approach in the case of options on several assets

VARGIOLU, TIZIANO
2000

Abstract

In this paper we analyse a stochastic volatility model that is an extension of the traditional Black-Scholes one. We price European options on several assets by using a superstrategy approach. We characterize the Markov superstrategies, and show that they are linked to a nonlinear PDE, called the Black-Scholes-Barenblatt (BSB) equation. This equation is the Hamilton-Jacobi-Bellman equation of an optimal control problem, which has a nice financial interpretation. Then we analyse the optimization problem included in the BSB equation and give some sufficient conditions for reduction of the BSB equation to a linear Black-Scholes equation. Some examples are given.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1374171
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact