The thermolysis of the palladium complexes [PdX(Me){P(C2H5)3}2] (X = Br, I, CN; Me = CH3, CD3) in decalin or toluene under argon, in the temperature range 120–160°C, produces methane, ethane and ethylene, in ratios which vary with the temperature. Deuterium labelling shows that the methane is mainly formed through intramolecular abstraction of hydrogen from the phosphine ligands by the coordinated methyl group and not through homolytic fission of the PdMe bond. The thermal stability and the decomposition mechanisms of the organopalladium complexes are compared with those of the platinum analogues, which are remarkably more stable. At the higher temperatures, the thermal decomposition involves cleavage of the PEt bonds in the phosphine ligands, and this leads to the formation of ethane and ethylene. The rate of generation of methane from the PdMe moieties is increased by a factor of 10 by the presence of an excess of dioxygen. Deuterium isotopic labelling shows that the rate increase is accompanied by a change from an intramolecular to a radical mechanism involving the abstraction of hydrogen by the methyl groups.
Thermal Stability of the organopalladium compounds. Non radical methyl elimination from [PdXMe(PEt3)2].
MORVILLO, ANTONINO;
1984
Abstract
The thermolysis of the palladium complexes [PdX(Me){P(C2H5)3}2] (X = Br, I, CN; Me = CH3, CD3) in decalin or toluene under argon, in the temperature range 120–160°C, produces methane, ethane and ethylene, in ratios which vary with the temperature. Deuterium labelling shows that the methane is mainly formed through intramolecular abstraction of hydrogen from the phosphine ligands by the coordinated methyl group and not through homolytic fission of the PdMe bond. The thermal stability and the decomposition mechanisms of the organopalladium complexes are compared with those of the platinum analogues, which are remarkably more stable. At the higher temperatures, the thermal decomposition involves cleavage of the PEt bonds in the phosphine ligands, and this leads to the formation of ethane and ethylene. The rate of generation of methane from the PdMe moieties is increased by a factor of 10 by the presence of an excess of dioxygen. Deuterium isotopic labelling shows that the rate increase is accompanied by a change from an intramolecular to a radical mechanism involving the abstraction of hydrogen by the methyl groups.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.