The problems related with multinomial sparse data analysis have been widely underlined in statistical literature in recent years. Concerning the estimation of the mass distribution, it has been widely spread the usage of nonparametric methods, particularly in the framework of ordinal variables. The aim of this paper is to evaluate the performance of kernel estimators in the framework of sparse contingency tables with ordinal variables comparing them with alternative methodologies. Moreover, an approach to estimate the mass distribution nominal variables based on a kernel estimator is proposed. At the end a case study in actuarial field is presented.
Nonparametric estimation methods for sparse contingency tables
PROVASI, CORRADO
2001
Abstract
The problems related with multinomial sparse data analysis have been widely underlined in statistical literature in recent years. Concerning the estimation of the mass distribution, it has been widely spread the usage of nonparametric methods, particularly in the framework of ordinal variables. The aim of this paper is to evaluate the performance of kernel estimators in the framework of sparse contingency tables with ordinal variables comparing them with alternative methodologies. Moreover, an approach to estimate the mass distribution nominal variables based on a kernel estimator is proposed. At the end a case study in actuarial field is presented.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.