The kinetics of the reaction between Carcinus maenas hemocyanin and cyanide has been studied at various KCN concentrations and a different temperatures (21° and 4°C) by following the decrease of the copper-peroxide absorption band, centered at 337 nm, of the copper still bound to the protein and the intrinsic fluorescence changes as functions of time. In all conditions used, the absorption band completely disappears and KCN concentration affects only the rate of the process. The reaction is kinetically homogeneous indicating no site-site interaction. The apparent rate constant increases with the square of cyanide concentration and the inverse of O2 concentration. The copper still bound decreases at a rate slower than the 337 nm absorption and the process is not kinetically homogeneous. The fluorescence of the protein increases after an induction period showing an inflection point at about 50% of the total effect. A kinetic model has been proposed on the assumption that the two metal ions are removed sequentially from the active site. The experimental data are in agreement with the theoretical equations derived from the model. The equilibrium constants for the formation of the complex between the first and the second copper ion with cyanide and the rate constants of their decomposition have been calculated. The rate-limiting process for the removal of the second copper ion is the formation of the complex with cyanide.
The reaction between cyanide and the hemocyanin of Carcinus maenas. A kinetic study.
BELTRAMINI, MARIANO;TALLANDINI, LAURA;
1984
Abstract
The kinetics of the reaction between Carcinus maenas hemocyanin and cyanide has been studied at various KCN concentrations and a different temperatures (21° and 4°C) by following the decrease of the copper-peroxide absorption band, centered at 337 nm, of the copper still bound to the protein and the intrinsic fluorescence changes as functions of time. In all conditions used, the absorption band completely disappears and KCN concentration affects only the rate of the process. The reaction is kinetically homogeneous indicating no site-site interaction. The apparent rate constant increases with the square of cyanide concentration and the inverse of O2 concentration. The copper still bound decreases at a rate slower than the 337 nm absorption and the process is not kinetically homogeneous. The fluorescence of the protein increases after an induction period showing an inflection point at about 50% of the total effect. A kinetic model has been proposed on the assumption that the two metal ions are removed sequentially from the active site. The experimental data are in agreement with the theoretical equations derived from the model. The equilibrium constants for the formation of the complex between the first and the second copper ion with cyanide and the rate constants of their decomposition have been calculated. The rate-limiting process for the removal of the second copper ion is the formation of the complex with cyanide.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.